If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-22y=112
We move all terms to the left:
y^2-22y-(112)=0
a = 1; b = -22; c = -112;
Δ = b2-4ac
Δ = -222-4·1·(-112)
Δ = 932
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{932}=\sqrt{4*233}=\sqrt{4}*\sqrt{233}=2\sqrt{233}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{233}}{2*1}=\frac{22-2\sqrt{233}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{233}}{2*1}=\frac{22+2\sqrt{233}}{2} $
| 5a-2a=38-2 | | 18+q+11q=10q-10 | | 7x+37=163 | | 7x+37=63 | | -11t-13t-14=14-20t | | 12p+10=6p+58 | | 3.5c-14.21+13.6c=-10.5c+16.15 | | 3.5d-8.9d+5.28=-9.2d-19.42 | | 3y/4+4=36 | | 3.5d−8.9d+5.28=–9.2d−19.42 | | -16-20+k=15-16k | | -26+2x=–2 | | -16t-5-18=-10t+19 | | -17y-12.91-4.03=-15y+18.66 | | -17-12.91-4.03=-15y+18.66 | | 2m=+7=-11 | | -3p=28+11p | | 9s-18-11=19+5s | | Y5=4x-19 | | (20x-8)=(18x+6) | | 3b-13b+1=20-11b | | 4-3a=5a+3 | | -11r-15=10r-18r+18 | | -11-15=10r-18r+18 | | 20-4c=16c-20-10c | | (10x-1)/7=8 | | 13z-6z+7=5z-13 | | 5m=4=15 | | -16.86+13.2v=3.57+15v+9.81 | | -2+4=2+x | | 2x+4/3=-x+1/3 | | -9j+9j+8=8-7j |